Growth cone pathfinding and filopodial dynamics are mediated separately by Cdc42 activation.

نویسندگان

  • Michael D Kim
  • Peter Kolodziej
  • Akira Chiba
چکیده

Although evidence exists that activation of the Rho family GTPase Cdc42 affects axonal development, its specific roles within a growth cone are not well delineated. To evaluate the model that Cdc42 activation regulates growth cone navigation by promoting filopodial activity, we adopted a live analysis strategy that uses transgenic Drosophila lines in which neurons coexpressed constitutively active Cdc42 (Cdc42(V12)) and membrane-targeted green fluorescent protein. We found that growth cones that displayed pathfinding defects exhibited little change in their filopodial activity, whereas others without pathfinding defects exhibited an similar50% increase in their filopodial activity. Moreover, effector loop mutations that were added to the constitutively active Cdc42 (Cdc42(V12C40) and Cdc42(V12A37)) exerted little influence over filopodial activity caused by Cdc42 activation but suppressed the pathfinding defects of the growth cones. Together, these data suggest that Cdc42 controls filopodial activity in axonal growth cones independently of its effects on their pathfinding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.

Extracellular cues guide axon outgrowth by activating intracellular signaling cascades that control the growth cone cytoskeleton. However, the spatial and temporal coordination of signaling intermediates remains essentially unknown. Live imaging of tyrosine phosphorylation in growth cones revealed dynamic phospho-tyrosine (PY) signals in filopodia that directly correlate with filopodial behavio...

متن کامل

Filopodial adhesion does not predict growth cone steering events in vivo.

Migration of growth cones is in part mediated by adhesive interactions between filopodia and the extracellular environment, transmitting forces and signals necessary for pathfinding. To elucidate the role of substrate adhesivity in growth cone pathfinding, we developed an in vivo assay for measuring filopodial-substrate adhesivity using the well-characterized Ti pioneer neuron pathway of the em...

متن کامل

Regulating filopodial dynamics through actin-depolymerizing factor/cofilin.

The regulation of filopodial dynamics by neurotrophins and other guidance cues plays an integral role in growth cone pathfinding. Filopodia are F-actin-based structures that explore the local environment, generate forces and play a role in growth cone translocation. Here, we review recent research showing that the actin-depolymerizing factor (ADF)/cofilin family of proteins mediates changes in ...

متن کامل

Signaling Mechanisms Regulating Neuronal Growth Cone Dynamics

During the development of the nervous system, neurons migrate to their final location and extend neurites that navigate long distances in the extracellular environment to reach their synaptic targets. The proper functioning of the nervous system depends on correct connectivity, and mistakes in the wiring of the nervous system lead to brain abnormalities and mental illness. Growth cones are moti...

متن کامل

Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin.

The molecular mechanisms by which neurotrophins regulate growth cone motility are not well understood. This study investigated the signaling involved in transducing BDNF-induced increases of filopodial dynamics. Our results indicate that BDNF regulates filopodial length and number through a Rho kinase-dependent mechanism. Additionally, actin depolymerizing factor (ADF)/cofilin activity is neces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2002